China OEM Bevel Gear Screw Jack Worm Gear Screw Jack supplier

Product Description

1.Convenient to adjust
2.Wide range of ratio
3.Easy to install
4.high torque
Application Industries:
Our SWL series screw jacks are widely used in the industries such as metallurgy,mining,hoisting and transportation, electrical
power,energy source,constrction and building material,light industry and traffice industry

Screw Jacks in construction

Often found in climbing mechanism of construction,the screw jacks use physical means to raise and lower loads, which typically range from 5 tons to 30 tons. A screw jack is a common type of mechanical jack, which works via a motor and gearbox by an operator. A screw uses the shape of its threads to raise or lower the load, or a traveling nut does the lifting while the screw turns in place. Mechanical jacks are self-locking(not for ball screw), which means that when power is removed from the jack, the screw stays in place until power resumes. This setup makes mechanical jacks safer than their hydraulic counterparts, because users don’t have to fear a loss of power. The main components of screw jacks are; trapezoidal lifting screw also known as lead screw, worm screw, worm gear and gear housing. A worm screw is rotated manually or by a motor. With the rotation of the worm gear, the lead screw in it moves upwards or downwards linearly. The feed rate of the screw depends on the turning speed, the number of teeth of the gears and the size of the screw pitch. In some models of jackscrews, The lifting screw does not move up and down. It only rotates around its axis. A lifting nut (also known as a travelling nut) moves along the lead screw. The lifting nut of the screw jack is made of bronze to decrease friction.

Product Parameters

MODEL

 

SWL2.5

SWL5

SWL10

SWL15

SWL20

SWL25

SWL35

Maximum lifting force (kN)

 

25

50

100

150

200

250

350

Screw thread size

 

Tr30*6

Tr40*7

Tr58*12

Tr58*12

Tr65*12

Tr90*16

Tr100*20

Maximum tension (kN)

 

25

50

99

166

250

350

Worm gear ratio (mm)

P

1/6

1/8

3/23

1/8

3/32

3/32

 

M

1/24

1/24

1/24

1/24

1/32

1/32

Worm non rotating stroke (mm)

P

1.0

0.875

1.565

1.56

1.5

1.875

M

0.250

0.292

0.5

0.5

0.5

0.625

Maximum elongation of screw rod under tensile load (mm)

 

1500

2000

2500

3000

3500

4000

Maximum lifting height at maximum pressure load (mm)

The head of the screw rod is not guided

250

385

500

400

490

850

820

Lead screw head guide

400

770

1000

800

980

1700

1640

Worm torque at full load(N.m)

P

18

39.5

119

179

240

366

464

M

8.86

19.8

60

90

122

217

253

efficiency(%)

P

22

23

20.5

 

19.5

16

18

M

11

11.5

13

 

12.8

9

11

Weight without stroke(kg)

 

7.3

16.2

25

 

36

70.5

87

Weight of screw rod per 100mm(kg)

 

0.45

0.82

1.67

 

2.15

4.15

5.20

Detailed Photos

 

 

 

SWL Series worm screw Jack:

1.The elevator is a combination of turbine pair and trapezoid screw rod to complete the lifting and lowering of objects. 2.Compact structure, light weight, safety and reliability, long service life, convenient installation

3.Self-locking function in the static state.

 

1. screw rod

2. nut bolt

3. cover

4.Skeleton oil seal

5.Bearing

6.Worm gear

7.Oil filling hole

8.Case

9.Skeleton oil seal

10.Cover

11. nut bolt

12.Bearing

13.Skeleton oil seal

14.Bearing

15.worm

16.Flat key

17.Bearing

18.Skeleton oil seal

19.Cover

20.Nut bolt

Product Description

 

Related Products

 

Packaging & Shipping

 

Company Profile

 

Standard or Nonstandard: Nonstandard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Customized Support: OEM, ODM, Obm
Brand Name: Beiji or Customized
Certificate: ISO9001:2008
Structures: Worm Gear and Worm
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

screw gear

Are screw gears suitable for high-torque applications?

Using screw gears, also known as worm gears, in high-torque applications requires careful consideration. The torque capacity of screw gears can be a limiting factor due to their unique design and characteristics. Here’s a detailed explanation of the suitability of screw gears for high-torque applications:

Yes, screw gears can be suitable for high-torque applications, but there are certain limitations to consider:

  • Lower Torque Capacity: Screw gears generally have a lower torque capacity compared to other gear types, such as spur gears or helical gears. The sliding contact between the worm gear and worm wheel, coupled with the high gear ratios typically associated with screw gears, can result in higher contact stresses and increased wear. Therefore, screw gears are generally not the first choice for applications with extremely high torque requirements.
  • Efficiency and Heat Generation: In high-torque applications, the efficiency of the gear system becomes crucial. Screw gears, due to their sliding motion and higher friction compared to other gear types, can have lower mechanical efficiency. This lower efficiency leads to increased heat generation, which may be a concern in high-torque applications where heat dissipation becomes challenging. Proper lubrication, cooling, and heat management strategies are important to ensure reliable operation under high torque conditions.
  • Load Distribution: The load distribution in a screw gear mechanism is not as uniform as in some other gear types. The load is concentrated on a limited number of teeth, which can lead to higher tooth stresses and potential wear. This concentration of load can be a limiting factor in high-torque applications, as it can result in premature gear failure or reduced lifespan.
  • Application-Specific Considerations: While screw gears may have limitations in high-torque applications, there are scenarios where they can still be suitable. For example, in applications that require precise positioning, heavy loads, or the ability to hold position without additional braking mechanisms, the self-locking feature of screw gears can be advantageous. Additionally, advancements in gear design, materials, and lubrication can help improve the torque capacity and performance of screw gears in specific high-torque applications.

When considering the use of screw gears in high-torque applications, it is important to carefully evaluate the specific torque requirements, operating conditions, and other factors such as speed, duty cycle, and environmental considerations. Consulting with experienced engineers and conducting thorough analysis will help determine whether screw gears are suitable or if alternative gear types should be considered to meet the high-torque demands of the application.

screw gear

How do you retrofit an existing mechanical system with screw gears?

Retrofitting an existing mechanical system with screw gears, also known as worm gears, involves replacing or modifying the existing gear system to incorporate screw gears. Here’s a detailed explanation of the steps involved in retrofitting an existing mechanical system with screw gears:

  1. Evaluate the Existing System: Begin by evaluating the existing mechanical system to understand its design, function, and the specific requirements for retrofitting. Identify the type of gears currently in use and assess their limitations or shortcomings that warrant the retrofit. Consider factors such as load capacity, speed requirements, space constraints, and the desired performance improvements.
  2. Analyze Compatibility: Determine the compatibility of screw gears with the existing system. Consider factors such as available space, alignment requirements, torque and speed requirements, and the feasibility of integrating screw gears into the system. Assess whether any modifications or adaptations are needed to accommodate the screw gears effectively.
  3. Design Considerations: Based on the evaluation and compatibility analysis, develop a design plan for incorporating screw gears into the existing system. Consider aspects such as gear ratios, torque requirements, lubrication systems, mounting arrangements, and any necessary modifications to the system components or structure. Ensure that the design meets the specific performance and functional objectives of the retrofit.
  4. Select Screw Gear Components: Choose the appropriate screw gear components based on the design requirements and the specifications of the existing system. Consider factors such as gear material, tooth profile, helix angle, pitch diameter, and the number of starts. Select components that are compatible with the load, speed, and operating conditions of the retrofit application.
  5. Fabrication or Procurement: Once the screw gear components are selected, proceed with the fabrication or procurement of the required parts. This may involve manufacturing the screw gear components or purchasing them from a reliable supplier. Ensure that the components meet the specified quality standards and are suitable for the retrofit application.
  6. Installation: Install the screw gears into the existing mechanical system as per the design plan. This may involve removing the old gears and replacing them with the new screw gears or modifying the existing gear system to accommodate the screw gears. Follow proper installation procedures, ensuring correct alignment, lubrication, and torque specifications.
  7. Testing and Adjustment: After the installation, conduct thorough testing of the retrofitted system to verify its performance and functionality. Check for proper gear engagement, smooth operation, and the ability to handle the intended loads and speeds. Make any necessary adjustments or fine-tuning to optimize the performance of the retrofit and ensure its reliable operation.
  8. Documentation and Maintenance: Document the retrofit process, including design specifications, installation procedures, and any modifications made to the existing system. This documentation will be valuable for future reference, maintenance, and troubleshooting. Establish a regular maintenance schedule to inspect and maintain the retrofitted system, including lubrication, gear wear monitoring, and any recommended servicing.

Retrofitting an existing mechanical system with screw gears requires careful planning, design considerations, and proper execution. By following these steps and ensuring compatibility, proper component selection, and installation, it is possible to successfully integrate screw gears into an existing system, improving its performance, efficiency, and functionality.

screw gear

How do screw gears differ from other types of gears?

Screw gears, also known as worm gears, possess distinct characteristics that set them apart from other types of gears. Understanding these differences is essential for selecting the appropriate gear mechanism for a given application. Here is a detailed explanation of how screw gears differ from other types of gears:

  • Gear Configuration: Screw gears consist of a worm (a cylindrical gear with a helical thread) and a worm wheel (a toothed wheel). In contrast, other types of gears, such as spur gears, bevel gears, or helical gears, have different geometric configurations and tooth arrangements.
  • Helical Design: The helical design of screw gears is a defining characteristic. The worm has a helical thread wrapped around it, resembling a screw, while the teeth of the worm wheel are typically perpendicular to the helix angle. This helical arrangement allows for a sliding action between the worm and the worm wheel, resulting in specific operational characteristics.
  • High Gear Ratio: Screw gears are known for providing high gear ratios, especially compared to other types of gears. The helical design allows for a large number of teeth to be engaged at any given time. This results in a higher gear reduction ratio, making screw gears suitable for applications where a significant reduction in rotational speed or an increase in torque is required.
  • Self-Locking Capability: One of the unique features of screw gears is their self-locking capability. Due to the helical thread design, the friction between the worm and the worm wheel tends to hold the gear system in place when the worm is not rotating. This inherent self-locking property prevents the worm wheel from backdriving the worm, enabling the gear mechanism to hold a position without the need for external brakes or locking mechanisms.
  • Sliding Motion: Screw gears operate with a sliding motion between the helical thread of the worm and the teeth of the worm wheel. This sliding action introduces more friction and heat generation compared to other types of gears, such as spur gears or bevel gears, which primarily operate with rolling motion. The sliding motion affects the efficiency and lubrication requirements of screw gears.
  • Lower Efficiency: Screw gears generally have lower efficiency compared to other types of gears due to the sliding motion and increased friction. The sliding action between the worm and the worm wheel results in higher energy losses and heat generation, reducing the overall efficiency of the gear mechanism. Proper lubrication is crucial to minimize wear and improve efficiency in screw gears.

While screw gears have their unique advantages, such as high gear ratios and self-locking capabilities, they also have limitations, including lower efficiency and increased friction. Therefore, the selection of gear type should consider the specific requirements of the application, taking into account factors such as torque, speed, precision, efficiency, and the need for self-locking or high gear reduction ratios.

China OEM Bevel Gear Screw Jack Worm Gear Screw Jack supplier China OEM Bevel Gear Screw Jack Worm Gear Screw Jack supplier
editor by CX 2023-11-07

Tags:

screw gears

As one of leading screw gears manufacturers, suppliers and exporters of products, We offer screw gears and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of screw gears

Recent Posts